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The Refinement of Heavy-Atom Parameters in the Presence of Non-Crystallographic Symmetry 

BY MICHAEL G. ROSSMANN 

Department of  Biological Sciences, Purdue University, West Lafayette, Indiana 47907, U.S.A. 

(Received 21 August 1975; accepted 20 January 1976) 

The necessary algebra is derived for the least-squares refinement of heavy-atom parameters in a series 
of isomorphous derivatives where the heavy atoms are related by non-crystallographic symmetry. In 
addition the simultaneous refinement of the particle (or molecular) orientation and position is considered, 
permitting the precise adjustment of the system of non-crystallographic rotation axes. 

Introduction 

The first method for systematic adjustment of heavy- 
atom parameters required in isomorphous replacement 
phase determination was proposed and used by Hart 
(1961) as part of the structure determination of 
myoglobin. This method depends on successive small 
adjustments of each parameter in turn to find the 
minimum of a suitable residual derived from a con- 
sideration of the phase circle diagrams (Harker, 1956). 
Rossmann (1960) introduced the use of the least- 
squares technique, but his method required the inde- 
pendent refinement of the parameters of each heavy- 
atom compound. Dickerson, Kendrew & Strandberg 
(1961a) and Dickerson, Kopka, Varnum & Weinzierl 
(1967) developed a more general least-squares analysis, 
requiring alternate cycles of an initial determination 
of the best or most probable phases (Blow & Crick, 
1959; Cullis, Muirhead, Perutz, Rossmann & North, 
1961 ; Dickerson et al., 1961b) and subsequent heavy- 
atom parameter refinement. Variations of this tech- 
nique have been employed in most structure determina- 
tions of biological macromolecules (Blow & Matthews, 
1973) using widely distributed programs (e.g. those 
originally written by H. Muirhead, R. E. Dickerson or 
M. G. Rossmann). In recent years it has become 
possible to solve oligomeric proteins where the protein 
subunits, and hence their associated heavy atoms, are 
related by a closed point-group symmetry. The mole- 
cular symmetry is, however, not always incorporated 
into the crystal symmetry. One example is the 
tetrameric lobster glyceraldehyde-3-phosphate dehy- 
drogenase (GAPDH) molecule which has 222 non- 
crystallographic symmetry (Buehner, Ford, Moras, 
Olsen & Rossmann, 1974). While for lower molecular 
symmetries each non-crystallographic asymmetric 
unit can be taken independently, for higher symmetries, 
such as icosahedral 532 viruses with 60 asymmetric 
units, this procedure is cumbersome, time wasting and 
possibly indeterminate. 

The external environment of identical protein sub- 
units related by non-crystallographic symmetry will be 
different. This might cause small surface conforma- 
tional differences, but the positions of the heavy- 

atom sites are not likely to be affected greatly, 
particularly for higher-order aggregates where the 
external surface is small compared to internal subunit 
contacts. This has been well demonstrated by Buehner 
et al. (1974) for GAPDH, where the r.m.s, displace- 
ment of any atom from its mean is less than 0-4 A. 
However, a breakdown of symmetry may have 
occurred (up to 2.5 A) in 'dimeric' ~-chymotrypsin 
(Tulinsky, Mani, Morimoto & Vandlen, 1973) although 
the large number of closely linked parameters they 
used makes their results suspect. Similar comments are 
valid for the notoriously inaccurate occupancy deter- 
mination. When heavy-atom derivatives have been 
prepared by diffusion rather than by co-crystalliza- 
tion, there may, however, be greater differences 
caused by the masking of the site of a given subunit 
by its environment. 

This paper considers the treatment of non-crystallo- 
graphic symmetry in a manner analogous to that used 
in linking atoms associated by conventional crys- 
tallographic symmetry. Such a procedure has been 
considered in the refinement of tomato bushy stunt 
virus (Harrison, 1975). Furthermore, the mathematic- 
ally similar problem of group refinement (Scheringer, 
1963; Doedens, 1970) has been applied in a variety of 
cases (La Placa & Ibers, 1965; Doedens & Dahl, 
1966), and relates to the more general problem of 
constrained refinements (Pawley, 1972). 

General principles 

It will be assumed that the best phase ~p of the native 
structure factor Fp has been determined for a given 
reflection. The vector fn, representing the heavy-atom 
structure factor, may be calculated with respect to the 
current approximate heavy-atom parameters. The 
phase triangle may then be closed (Fig. 1) with the 
vector D, the calculated structure factor of the heavy- 
atom compound for that reflection. Thus 

D=Fp+fR .  (1) 

We now wish to find a small change AD in order to 
minimize the squared difference ( F p ~ - D - A D )  2 for 
each heavy-atom compound, H, and for each reflec- 
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tion, h. Here ]Fen[ represents the observed structure 
amplitude of the heavy-atom compound. It can then 
be shown (cf. Rollett, 1969) that the corresponding 
normal equations are 

~J , H 
(2) 

where ~ is a parameter required in the calculation of D 
and o9 is a suitable weight to be applied to each ob- 
servational equation. The subscripts i and j run over 
all parameters. 

Now from (1) 

D2=q~[(an+Fe cos ae) 2+(bn+FP sin ae)2], (3) 

where 1/qn is the scale factor to be applied to FpH 
relative to Fe, and an and bn are the real and 
imaginary components of fn for compound H. 
Hence 

~D D 
, (4) 

~ q n -  qH 

and for other parameters 

~aH 3D _ q 2n (an+ Fp cos CZe) 
~-~ ......... D- ~ 

+(bE + Fp sin ~e)-33f]. (5) 

It is now apparent that in order to determine the 
shifts A~ for each refinable parameter it is necessary 
to set up the normal equations (2). These can be 
computed by evaluating D from (3) and c~D/c~ from (4) 
or (5). However, it is still necessary to derive an,bn 
and their derivatives in terms of the crystallographic 
and non-crystallographic constraints. 

Introduction of symmetry into the structure factor 
expressions 

Let x be the position vector erected from the molecular 
or particle center with its components expressed in 

r 
r~ol 

Fig. 1. Vector diagram relating the structure factors of the 
native protein or virus particle Fp, the heavy-atom com- 
ponent fH, and the complete heavy-atom derivative Fpm 
D is the calculated heavy-atom derivative structure factor 
based on a knowledge of Fe and fH. 

terms of fractions of the unit-cell lengths. Then 

x .=[C.]x  (6) 

where [C.] is the nth non-crystallographic symmetry 
operator. Let the molecular or particle center be at S, 
referred to the crystal origin. Thus a heavy atom in the 
nth non-crystallographic asymmetric unit is positioned 
at 

p,, = x .  + S 

= [C.]x + S (7) 

with respect to the cell origin. 
Let [T,.] and d m be the crystallographic rotational 

and translational symmetry operators. Thus, an atom 
in the nth non-crystallographic asymmetric unit after 
operation with the mth crystallographic operator 
will be related to the standard atom, x, by 

where 

Xm,,=[Tm]p.+dm 

=[Tm] [C.]x +[Tm]S+d,. 
: [ Rmn]X Av [ Tm]S.+ dm ( 8 )  

[Rm,]=[T,d [C,] 
=[Td [~] [~,] [/3]. 

Here [4.] is the nth non-crystallographic rotation 
operator with respect to an orthogonal coordinate 
system, [~] is an orthogonalizing matrix, and [/3] is a 
de-orthogonalizing matrix (Rossmann & Blow, 1962). 

Should it, however, be necessary to slightly rotate 
the system of non-crystallographic axes by [A], then 

x ' = M  [A] [/3]x 
and 

x.=[Co]x 
=[c~] [~] [J] [Nx.  

It follows that 

[Rm,]=[Tm] [~] [0,] [A] [fl] (since [fl] [cQ=l). (9) 

Each rotation matrix, [Rm,,], can be evaluated since 
the crystallographic operations [T,,] are completely 
known, and the absolute directions of the non-crys- 
tallographic operators [0,] are at least roughly known 
while their relative directions are completely known. 
The elements of [0,] are expressed most easily in terms 
of the rotation, to, about an axis defined by its latitude 
and longitude, ~ and ~0, respectively. The non- 
crystallographic adjustment matrix [A] can be ex- 
pressed in terms of Eulerian angles Vx,~z, V3 which 
are chosen to give an identity matrix before refinement 
(Rossmann & Blow, 1962). Instability of this matrix 
can be avoided by fixing V1 equal to zero under these 
special conditions. 

The structure factor expression of reflection h for 
the J heavy atoms in the compound H can then be 
written as 

fH = ~ ZS exp (--Bs a2) exp 2nih.  Xm. 
J = l  n = l  
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where a2=(sin 0/2) 2 (using the usual notation for 
Bragg angle, wavelength and temperature factor). 

Therefore 
p-j -~ 

f~/= ~ Zj exp ( - B j a  ~) 
./=t 

x exp 2zrih. ([Rmn]X J + [Tm]S + d.,) 
= n=l  

J 
= ~ Zj exp ( - B : a  2) 

J = l  

11 x exp 2nh. ([Tm]S + din) 

x ~ exp 2~zih. [R~,]xj . 
I'1=1 

Now set 
0 m = 2:rh. ([Tm]S + am) 

and 
~Omn ~- 2~zh. [R,..]x:. 

These definitions can be rewritten as 

and 

where 

and 

Hence 

Om = 2nh~,. S + ~m 

rpm,. = 2~zh'm.. xj 

h~ = [Tmlrh, 
hmn=[Rm.]rh , 

~m---h  •dm • 

(10) 

a H 

b H = 

~ Z j e x p ( - B ' i a 2 ) {  ~m cOSOm Z 

Zm sin Om ~. s in  ~Omn } 

Z:exp(-BJaZ){~msinOm Z COS ~mn 
J n 

Zm COS 0 m Zn sin ~a,..}. j 

(11) 

Hence 

Sanos1 { Z (- sin 0o 

X ~ COS @mn-- Z (2zchm) cos Om ~ s in  ~Omni, 
/1 m II J 

and similarly for $2 and Sa, which are the x,y,z 
components of S; 

dan 
dxj - ~ Zjexp(-BJtrz){~ COS0m Z (--2ffhmn) 

x sin ~0~,- ~ sin 0 m Z (2~hmn) COS @ran}, 
m /1 

and similarly for yj and zj, which are the x,y,z 
components of x~; 

daH { dNl- ~ Zjexp(-Bja2) ~ cOS0m ~ &Pm,dN1 

&P"" } 
x sin~0m,- 2 sin 0,, ~ - ~ i  cos ~0m, , 

.1 

and similarly for ~'z and ~'s, which are the Eulerian 
adjustment angles. Similar expressions can be written 
with respect to bn. The derivatives with respect to Zj 
and Bj are straightforward. 

Finally, from (10) 

d(am. _ 2~zh d 
d~, "~B,- [R..] 

=[T,,,][~][O,]{-f~[A]}[fl] [from (9)] 

Derivatives of the elements of the Eulerian matrix 
[A] can be easily evaluated (Rossmann & Blow, 1962; 
Rossmann & Argos, 1975). 

The Eulerian variables ~q, ~'z, ~'s and the transla- 
tional parameters &,$2,$3 (S) affect the structure 
factors, fn, of every heavy-atom derivative, whereas 
the other parameters qn, Z j, Bj and xj affect only the 
structure factors of a particular compound. Care must 
thus be taken in setting up the elements of the normal 
equations. Those elements relating to parameters 
governing the orientation and position of the molecule 
are formed from sums over all heavy-atom compounds, 
where the other elements contain terms only from one 
compound. 

Results 

This method has been satisfactorily applied to three 
problems. The program was set up to read the 
independent molecular or particle symmetry operators 
from which the program then developed the [C,,] 
rotation matrices. Thus for 222 symmetry it is 
necessary to read the K, ~,,~0 values defining two per- 
pendicular twofold axes which generate four rotation 
matrices. Similarly for an icosahedral virus it is only 
necessary to read in the K, ~u, ~0 values defining in order 
the three, two and fivefold axes in a plane and finally 
a perpendicular twofold axis (Argos, Rossmann & 
Ford, 1975), which generate 60 rotation matrices. 

Pig H4 LDH crystals contain one molecule per 
asymmetric unit in space group C2 (Eventoff, Hackert 
& Rossmann, 1975). The molecule has 222 symmetry 
and there was one heavy-atom site per polypeptide 
chain (non-crystallographic asymmetric unit). The 
temperature factor was kept constant at 10 A z. Hence 
there were four parameters to be refined for the one 
independent heavy atom. In addition it was necessary 
to refine the relative scale factor of the heavy-atom 
compound structure amplitudes, two origin transla- 
tional parameters of the molecular center (the third 
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component defined the y axis origin) and three rota- 
tional parameters of the molecular orientation; which 
is a total of 10 parameters. The refinement was a single 
isomorphous refinement in the absence of any other 
derivative. After three cycles the parameters had 
essentially refined. As expected (see Buehner et al., 
1974) the positional parameters agreed well with those 
found by independent refinement of the heavy-atom 
parameters. However, the occupancy refined to Z =  
58.6+ 0.4 electrons while on independent refinement 
the occupancies were found to be 53, 42, 66 and 69 
electrons, giving a mean of 57.5 electrons. Final 
residuals did not differ significantly from those found 
when refining the atoms independently of non-crys- 
tallographic symmetry. The amount of computer time 
needed per independent parameter per reflection was 
2"8×10 -2 seconds using the non-crystallographic 
constraints as opposed to 2.0 × 10 -2 seconds without 
constraints. 

The other two problems were tests on model data for 
viruses. The first test was a simulation of satellite 
tobacco necrosis virus (STNV) where one whole 
particle is in the crystallographic asymmetric unit of 
the C2 cell (Lentz & Strandberg, 1974). The CPU time 
per independent parameter per reflection was 1.4× 
10 -2 seconds. The second test simulated the type II 
southern bean mosaic virus (Akimoto, Wagner, 
Johnson & Rossmann, 1975) where the virus sits on 
the intersection of the crystallographic threefold axis 
and the three perpendicular twofold axes in space 
group R32. Thus in this case there was no refinement 
of the particle orientation or position. The CPU time 
per independent parameter per reflection was 0.1 × 
10 -2 seconds. 

Further experience will be required with real prob- 
lems to determine the range of convergence with poorly 
placed atoms. The program was, however, subse- 
quently successfully employed in the double isomor- 
phous replacement refinement of real STNV data 
(Strandberg & Lentz, 1976). 

All calculations were performed on Purdue Uni- 
versity's CDC 6500 computer. 
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manuscript. The work was supported by the National 
Science Foundation (grant No. BMS74-23537)and the 
National Institutes of Health (grant No. AI 11219). 
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